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LIGHT SCATTERING IN CRYSTALS WI1 ’H SURFACE CORRECTIONS

Melvin I
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Bell l.a! ’ ‘t h orn s . fit,,,, v ll,ll . \, Ii ./ i r,ei () ‘Q “I

A summary is g iven ol tec hniques ~iiid resu lts t I ) r  c a k u l a t i n g  light scatter-

ing in anisotropic cr~ sta ls valid for arhiti ,irv ( liIcctu )ns of the incident beam,
the scattered beam and the cr y s tal  s ur t ac e normal relative to the crystal axes.
A dyadic Green ’s funct iuit t hat ( l islII lg ulshcs ray and propagation directions
leads to a scattering efficienc y ,molt t he cr y s ta l  that invokes the Gaussian cur-

vature of the surface of wa v e normals A l t e t  taking account of the solid angle
expansion , and the source vo lume deniagriihc .ition at the crystal surface , a
scattering formula is given suitable for c(Imp.irison ~ it h experiments done oUt-
side the crystal. Application is made to Hrilluutn and Raman  scattering.

I. INTR ODL( ’TION
The availability of laser sources has led to a great upsurge in light scattering exper iments

in recen t years. Many exper itl ients have been performed on crystals of low symmetry and
large optical anisolropy while a f e w  experiments 2 have used Jig J,S scattering to measure quan-
illatively the nonlinear polarization causing the s~atIe ring. Such numerical measurements re-
quire a theory which ( I)  accounts corr ectl~ for t he niinc s l l i nea r i t v  of the ray vector and the
wavevector that result-3 from the optical ailisotropv and ( 2 )  relates the nonlinear polarization to
measuring instrument parameters ss hich are outside the cr~sta l. Previous theories 3 have often
mishandled the first requirement and have a lways  ignored the second.

The purpose of our study of the theon of light scatteri ng , of which we present a sum-
mary here, has been to remedy these deficiencies of previous theories. To remedy the first
deficiency resulting from optical anisotropy we have based our theory on a Green’s function
solut ion of the electric field wave equatIon ~~ this technique is appropriate because the
scattering volume is typically very small compared to t h e  su e  of the crystal under study when
laser sources are used. Because even the cryst a l  surface is in the far field , art asymptotic
evaluation of the Green’s f~nction 1 inside the c i ’  s t i l  is adequate. Our first - and incorrect -
evaluation 4 used a sta tionary pha~~ integra tion over t~~~ I variables followed by a residue in-
tegration over the third variable. The appealIng but nevertheless incorrect result was what
would have been calculated for an isotropic medium wit h the subsequent replacement of the
isotropic refractive index by the one approprIate to the correct ray direction in the crystal.
This replacement procedure has been used by others ~‘ ~ ur seco nd and correct - evaluation 5’7

follows that of Kogelnik ~ and Kogelnik and Moti 
‘1 w ti used it Oil a ma~nctosonic media prob-

lem. TheIr work was based on a stationar y pii is~ tec hnique of Llghthill t O in which the residue
integration was performed fi rst and the stationar y ph~Lse metnod was applied second. The
correct asymptotically evaluated Green’ s funct ioii In an .iiiisotropic crystal 5’7 is presented in
Sec. II. This procedure takes proper account of the noncol itnearity of the ray and propagation
directions in an anisotropic crystal. In Sec. Ill the Green ’s (unct ion solution is used to find an
expression for the scattered power inside the c r~s Ial The expression differs in several ways
from the best previous treatment of IirihlouIn scattering in ~iiiisiitropic media by Moiulevich.~~
One difference is the appearance of the (iaussian curv at ure K u t  the surface w (k) 

~~ w in our
formula for the scattered power inside the cr ys ta l  Mot ulev ich’ s treatment was not based on a
Green ’s function approach but rather on Ginihurg’s I?  Ilamiltonian approac h using an aniso-
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ropic ( ,iuluuoi h g.iiig:

In sets I \ intl \ v~e pies: i i  t lie i ented~ i t  t h e  second def icie ncy of previous theories ,
tli , it is . to re lati i i i~ th e ~L . i t le red pu)~~.u ins ide t he I ~ i .i) t u) q ua t i t l i t e s  character izing the detector

u~~i t c  t he ~ t~~sl ,il In ~~~ IV he solid ,tn~’le ins i de the ~r~st al  is related to the expanded solid
angle Ii Is idL the s t , i )  I l ie ortii,il,,s ese i le d  ;iic co mplete ly general in applying to any
orient . il ion ‘t the c t s s t , i l  ,i~ s the ~e . i !  r i ’, , ,~ id t he surface normal In Sec. V the length

the sc it I rung ‘lut iue alt t o g  the uui~ tent ~ . .. ii IS I I ,~ ed to t he corresponding deniagni fied
let ig i Ii is seen ,iu )s utl e the r~ si.i I h’, ii held ~~~ 1 the ( lCteC i uu ) t )  optic s The demagnification
t ’riiiiila is ~ilsit ~ ‘nip Ieicl ~ gei i . t I  in . ; i k  to g my n r t . n t i t io n  of ti le crystal axes , the scat-
tered .i~ . ,inu d the su r ) . k : ’i ’r ii. ) I lie a. t i l i  i t  the se ii~e ring vo lume (t he unscattered beam)
‘~s neil s i r  sources .ire a s c i I  IS t~, )~ iL ~dlv 1111k h ~~ tha n t he v~ udth i t  the field stop of the detec—

‘ii pit ~s ,itid s i t  does l i t  en t er  the t~~ tiui.~ CSP I1L i t l v  l ie  solid angle expansion and source
v home lcni.ign it ie. i i  urn sp ressi Ins . 1  then nihi ted wit h the sc attered power formula of
‘sc. Ill to produce in ‘sni \ II a ,~ ~ c i  ; v F I imul,i ap pl y ing to measurements made out—

lie r s t.u l
rite sC , il te red ~)ui \5  e r  I orniul.is ‘I S,~ -. Ill ,,t d \ l  I :ire forn iulated in terms of an arbitrary

meL li~iiiusm ‘I t tg ) r a l ter ing. In ‘se~ \ III t i e t~ )’~ ci huirmula is speciali zed to two important

inteL hia nisnis . Br ilt uiu ii i ‘L i i  ‘ n e  (f ron t  ¼ i t t S t I C pho tons ) aild Raman scatteri llg 14 ( from
optic p lt itn oos )  I he t i i i a )  ii r i i iul.t s ire c u i t np lc t ck  genera l vet  compact and convenient.

I I .  l \’~lI l  
( RF’ l ‘x ’s Ft \(’T ION

Ilte \5 , i v t. ei_lU,ittl ii t i  lie c l e c t r f t  l i ck !  F C r ? e v p (  i(~~
( )  i i i  a u  ail isotrop iC dielectric gen—

c r e e d  h~ t he t lonli i~e . r  r I , n u ,’, u i i i i  P “‘ r I  e’.p ( — w i t  it the single frequency w is
2 2 5 / .

“ ( ‘ .7 F. ’ 
“ ~: ~~ 

) F = 
~~~~~

. — . (2.1 )
I ’

I’ h i s  the (iieeil ’s lt ii icti uin ‘. l) l l it tu ) I l

F! t i  J ‘‘ t r r ’ ) I’ ‘~ (r )dr~ 
“ /~ (2.2)

5 Icr  C

(, ‘R J. e~i1’ ( ,k K )  
~~~~~~ (2.3)
( 2ir ) 1,, ( k. ,.

11k ,,, ~, ,, IA 21 — kk  — ~
‘ (

~~ I , (2.4)

and ~ I is the t requenL dep ci tdent d ie)eL Inc IC i5’ r.
We h av e prey iousi given in si iipro k cv .uluiitt ui i i of Fq. (2.3 ) valid for kR >> I.

Ill a slight e li.unge iii nu ) t a t to t i . tic . i,v  niptoift ii ide  (iree ll ’s funct ion can be wri tt en

1 ( R )  = 

~“J ~ ~~~~ I~~( R )  ( 2.5)
4 — i )

t ier’ : e ”~ is t he unit eL’ t i e  he ld  vcu lor iss icial l v’. u th a g iven mode ~ (e.g. extraordinary)
hose ray direction I is pa ral lel to  the d i rect i on at ubset ,it iu)n

- 14; R . (2.6)

and F, ~ is t h e  aIlgIe hci w e e i , t he ra~ vCc t ii I intl the vs uvevcct o r k ~ ,uss ,)c i luted with the above
au d i r e c t  ion, l i e  sealar ( recn s I unction becomes
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. . ) I L i b . i
g’ (R) — I” ~~~~~~~ 

“ __..L , (2.7)
4ir R

where

‘I. 
~~~~~~~~~~~~~~~ 

(2 8)/

and K~ is the Gaussian curvature of the in 1k) surface at k~ , Equation (2.7) has been shown 7
to agree precisely, in the uniaxial case , with the (ireen ’s funct ion obtained without asymptotic
approximations. This (ircen ’s function disagrees hv the factor / ‘

~ with the intuitive notion that
for a given direction of observation one h a y  use the Green ’s func tion for an isotropic medium
with the index of refraction approprIate to direction k~ .

III . SCA tTERED POWER INSIDE THE CRYSTAL
If Eqs. (2.2) , (2 .5) . (2. 7) and ( 2.8) are used to calculate the electric field and if the

corresponding magnetic field, H = (V x E  )/ (,w ~~, I , is also found, then the Poynting vector
for a given mode 4 is found to be

— ~~~~~~~~~~~~ ~~~~~~~~ 
2~ 4j 2~ (3.1)

32ir ’ , (cosF ’
where iz~ is the index of refraction appropriate to wavcv ector k~ and

c ’t’ e b . j  P ” (r b c x p (  — i k~ ‘ r)  dr . (3.2)

The ratio of the scattered power inside the c r y s ta l.

= ‘i/ t i ’ . (3.3)
(w here dft ‘ is a solid angle of rays in r space ) to the incident power .

= 4 Is ”I = j E”~ 
2cos8 ” , (3.4)

may be expressed as

(3.5)
IT’

Here ~~~~ is the scattering volume accep t ed h~ the detector . 4 , the cross-sectional area of the in-
cident beam inside the crystal and R, the sca t ter ing ef Ficienc y (the scattered power per unit in-
cident power, per unit solid angle, per unit path length) . is given by

d i
R — -

~~~
- “-— . (3.6)

1 x ,,’ ~, Li)sF’ ibc(,SF’ f’ (k ’ ) 2 K
Thc nonlinear phenomen a that give rise to the sc at t er in g are included in the quantity

J P W ( r )  u ’ i I i~

I 
_ _ _ _ _ _ _ _ _ _  

. (37)
2e ,~ j E

H 
j  

V S

One striking way that the expression , Eq. (36 ) , for the scattering efficiency differs from previ-
ous expressions ~s by its dependence on the Gaussian curvature K of the ~ branch of the
w (k) — a, surface.
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IV. SOLID ANGLE EXPANSION
The ratio of the solid angles subtended by the rays of a beam inside and outside a crystal

can be factored as

dIV dIV (jfl A
ii 0 

— IT’ , (41)
d1i01,1 1 ~if i. ’i df1~~1

The first factor describes the ratio of the solid angles in ray vector space and wavevector space
and is independent of the existence of a crystal surface. The second factor, describing the
change in Wa\CvCv’tor solid angles, is completely determ ined by Snell’s law .

Since d1i~ is readily computed in terms of the area of a patch dA ’ of the ~~(k) surface,
see Fig. 2, and df ~~, is related to the sa me area by Gauss’ theorerna egregium, see Fig. 3. we ob-
tain our previously quoted result ~

= K~ (k ’ ) 2/cosb . (4.2)

Across tIle surface of a crystal (nominally in tIle 3 or direction) Sod ’s law guarantees
the continuity of the transverse components of the propagation vector and, hence, of thc 1 dk 2.
Since dk 1 dk7 is simply related to the patch area d,4 A , see Fig. 4, and hence to the solid angle
dfl “, see Fig. 2. Snel(’s law leads to the relation

dfl A
in cosb cosa (4 3)

~
111oui (,,~~ ) 2 cosI3

where f,3 is the angle of arrival of the ray inside the crystal to the surface normal, 6~ is the an-
gle between ray and wavcvec tors , as before, and a is the angle between the departure ray out-
side the crystal and the surface normal.

The product of Eqs. (4 .2) and (4.3 ) yields the desired solid angle expansion

d1i ,~ / df t 0~1 ( w/ c) 2 K~cosa/cas~ . (4.4)

A slight rearrangement of this equation suggests that
(111 “cos~ /K (4.5)

is an invarian t for the passa~e of a hcanl from one nlat entat to another, a result we have recent-
ly proved qui te generally. ~ Equation (4.4) is a special case of this invariance in which the
second medium is a vacuum w ith K~~ 

= ( c/os

V. SOURCE VOLUME DEMM;NIFICATION
When the laser beam , sca ttered ray, surface normal, and departure ray outside the crystal

are all in one plane , it is possible to derive the length i~ along the laser beam in the crystal
from which radiation is admitted by a detector field stop of length I~. As seen from Fig. 5,
these lengths are related by

(5.1)
cosP cosØ cosa

wherc U~, is the scatter ing angle.

When the rays mentio ned above arc not all coplanar , Eq. (S I )  must be replaced by

— 
Ncosf3 (5.2)

~
‘t sinO~coSa

where N is the noncoplanarity correction , 16
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= l/ (cos~ cos~~’ 
— cosf3 Siil~~ s In~~

’) . (5.3)

Here th ’ is the angle of tilt between t he plane defined by the unscattered laser beam and the
normal to the input surface and the plane defined by the scattered ray and exit surface normal;

~ is the angle of tilt between the lat ter plane aild the depar t ure plane defined by the normal to
the exit surface and the scattered ray after it has left the crystal.

VI. SCAUEREI) POWER OUThIDE THE CRYSTAL
To convert Eq. (3 .~

) to a power scattering formula outside the crystal , we use

= pss . u i/ 7V ~~ul 
, (6.1)

= !~~ 
Ji~fli (6.2)

where 7~ ° and 7~” are entrance and exit transmission factors. If we note that V514
Eqs. (4.4) and ( 5.2 )  can be combined to yield

2 M1) i / U  l) ~~~
15 1 / I l  ‘ = . 

(6.3)
in c sin()~

s~ here ‘~e li~tv e wr i t ten dl 1 ~ fir I f ?  , a remind us that it is ihc detector solid angle. A de-
tailed derivat ia’ l it this result has been g iv en elsewhere. 7 .14 . 1 6 .t~

If Eqs. (6 . 1) . (6 .2 ) and ( 1  3 )  . , I e  cu)flhh iilCd with Eq. ( 3 5 ) . ~e obtatn

!~ !~~~
“ I’ ‘ I  ) I t l  ~ ‘~A ” 2

~~~~~~~~~ = ~~~~. -. - ~~~~~~~ . (6.4)
(.

If Eq. (3.6) is used for t he scat ter ing etl le ie iicv , ~ e obtain

— ~~~ 

~ 

~~~~~~ — ~~~~~~~~~~~ (6 5)
I”; 

— 
I Stt l i I y ~ 7T ‘n ’1’,l c )s~ 

.b~~05~~
n

Equa tion (6 , S) inc u ur p n i .u l es ,uII the geom etric upitcs nI the cr~st.iI surface. The mechanism of
the scatt er ing is co ntaine d in .1, w hose cv ,ilu.ilion vsuhl  he discussed in the nex t section.

~II. .~PPJJ(’ATI()N TO liGHT scA’rrErnN(;
To apply our final sc , , i te r i r rg ‘ u.i~i r i , Eq . ~ c~, c i  Rnulkuuin , Ranlan , or some other

s’ at ter ing mechanism , i t is necessa r~ to ey iu luaie J. u) t l v ~ 
( 3 7 ) , which involves the nonlinear

optical properties i f  the ~~ ,i I e rung mcdi tim ‘~ t n~ e the v uiuiime “ is large compared to all
relevant wavelengths , it us permissihi’: to ta ke the hun ii t  as I “ approaches infini ty. The
W einer— Khinchin theorem applied 11) sp a t i a l  varIables rat her than tIle time then permits Eq.
(3.7) to be rewritten as an autocurre lation .

— 
(. 6 e P~ ,~U) ’  

~~~L~__ (7 ~
)

‘i,~ F i r  ( I ’
where tl’ie limits are inl iuiu ru

With the understanding

E” ( r i )  — -

~~ 
F ( r )  i “ ‘ 4 F” ( r ) ’  U~ I (7 .2)

P ~~ ( r i )  = 
~ 

( r )  u ~~~~~ * P ‘~~ ( r )  * (7.3)

w here w 1 is the input or user frequency and ~~ is the l3nillouin (or Raman ) scattered frequen-
cy, we can write
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P~~ (r .r )  = 
~~ 

(r , ) E~ (r ,f ) (7.4)
where the “susceptibility ” 

~~~~ 
is space and time dependent because it is induced by the pho-

non field in Brillouin or Raman scattering. Equation (7 .1) can then be simplified to

= exp [~ i(k~ —k ’1 ) r I  < N~
u (0 ,0)  N~ ’( r ,0)  > ~ (75 )

where

~~ (r . i) = ~~ ( r i )  e~ (7.6)

and we have used the plane-wave character exp (1k ~ ‘ r )  of tile u lls ca t t ered wave E” ( r ) .
If one is concerned with line shape , Eq. (7.5) can be decomposed by

J = J J(w ) dw /2ir (7 ,7)

wh ere

J (w ) = + JJ exp [ i (w  — o ~ )il cx p  I — ’  (k~’ ~ k ’~
) r i < N~~ (0,0) Ni” (r i) > fr di, (7 .8)

and only the positive frequency componcllts of cxp ( —iW , !)  N~’ (r. i )  are included so that
J(oi ) vanishes for (0 < 0.

Brillouin Scattering
The first applicatioi1 of our modified Green ’s function , Eq. (2.7) , with sur face corrections

was made in connection with a detailed study of Brillouin scattering in calcite. Because the
formulas in this paper give a clear factorization of our Brillouin scattering formula into intrin-
sic and geometric components , we indicate here the evaluation of J based on Eq. (7.5). To be
COflSiSteilt with our definition of the photoelastic susceptibil ity as a relation between the posi-
tive frequency components of P 51 . E’1 and £l~~ j  (the displacement gradient), we must wr ite

~ oh — 2Xoh,~/ U( ( j  . (7 .9)

The averages. < u,, (0,0) ii 
~
, ( r i )  > , can be evaluated by using the expansion of u~ interms of normal coordi nates ,

u (r . i) = 

~~ [ 2ptl w ( q ) 1  
2 

b [  e TMl f a( q,i) + ~~~~~ a ’ (q, i) . (7.10)

where q k ” is the acoustic phonon propagation vector , p is the crystal density and 0 is its
volume so that p11 = MN = mass per unit cell x number of cells. The unit displacement vec-
tor b is characteristic of the type of mode (e.g. transverse ) , and the sum over q also implies a
sum over types of modes . The mod e an lplitudes in the quantum mechanical case obey

< a~
(q.i ) a ( q ’~i) > ii~~

(q.q ’) , (7 .1 1)

< a( q, i) i:~
( q~i )  > (

~ + I)  8( q,q ’) (7 .1 2)

where ~ is the actual phonon excitation number t hat reduces to

— exp (lku (q )/& Tl — I 
(7 .1 3)

in the thermal equilibrium case. Averages of the type , Eq. (7 .1 2) , contribute to Stokes scatter-
ing, w herea,s those of type , Eq. ( 7. 11) , contribute to anti-Stokes scattering. Because we usually
have ~~<<k 7~ both Stokes and anti-Stokes scattering have an intensity proportional

k T/ Tfw. II w e combine  Eqs. (7 .5) and (7.9)-(7.l3), we obtain
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j  = ~~~~ ( . G E ;c 
X ,,h/ hA a, (7.14)

pv 
~

where a1 q1/ ~l = k ,4/ 1k is a unit vector in t he direction of phonon propagation and

= ~.i 
(k ~)/k ’ (7. 15)

is the sound velocity.
Equation (6.5 ) for tile Stokes (or anti-Stokes ) power scattering by a single type of acoustic

mode can be rewritten as

— ~~ 
~ .~‘~I j )  d l) ’~ j V f l 17 ’VX i t  kTG (7 16)— 

C 5Ul(1~ 871. 2 1,~’ ii~~ cos6 ’6 COS8 ”pV ,~

where Gof Eq. (7. 14) can also be expressed in terms of the Pockels tensor , p,/~,. by means of

G = ( 1/4 ) (~~~
I
~ ~~~~ (cosh~~cos~~)

2 F , (7 .17)

~4 in , . 2 (718)— (
, I qAl k a1

Here d~ and d~ are unit electric displacement vectors of the input and scattered beams, and ~is the Brillouin scattered frequency w ~~~ . Equation (7.16) was used in the analysis of our exper-
iment al results I . t9 except for the noncoplanarity factor , N, which was not needed then since all
experiments were conducted in a symmetry plane.

Raman Scattering
A detailed analysis of Raman scattering by polari rons using (he flucwation-dissipa iion ap-

proac h of Barker and Loudon 6 has been given. 14 To evaluate Eq. (7.8) for J(o,s ) , needed to ob-
tain the line shape in Raman scatter i r lg , we express the nonlinear susceptibility defined in Eq.
(7 .4) in the usual way,

x ,, ( r i)  = 2L A( ~~ (r , i )  + 28u/k EA (r .i ’)  . (7.19)

as an ionic contribution associated with the displacement uv~
L of mode j.t plus an electronic con-

tribution proportional to the electric field E(r,i) . The factors of 2 assure co nformity with
definitions in our previous work. 14 Because field and displacement are correlated in polariton
motion , it was simpler to evaluate t h e  correlations with the help of the fluctuation-dissipation
theorem 14,6 

~ T8~ repr esents the response of <B> to a unit force at frequency w applied to
.4. Eq. (7.8) yields ‘~~~

J (w + w ’ ) 41) n(w ) e~ e7 c’~ e~’ 11111 ‘u/au (7.20)

where

— E L4~ ~~~~~~ 
T .  + B,,’~ ~~~ T ,, + ~~ (A / p ) ~~~ ~~~ + ~~ ~~ Tv,,, , (7.21)

(A~ ) qJ,~ f
iM (w ) + ‘1,;A T ,, ~~ ~~~~ q i 8” (~~) + ~~~ J

+ ~~ (,4~ ,i~ ~~ ~~~ + ~~ ~~ jj ” (~~ . (7 .22)

The second form, Eq. (7 .22) , has used tile equa tions of motion to express all response func-
tions in terms of the field-field response, i.e. the response u,l the electric field to a unit applied
external polarization , as
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I ~ Li  ~ 
— 6 ( 

~~~ i — (a P 1 S K (w I
l i e  tirst v~~~i iei mn s i i i  I q ( 7  7 3 i  ep resent t he l,, I s v e m s c  muides while the third term
repre sent s the l u ’ t tg m i ud mn , u I  om uude

l Im e  nmut te ii ’ i ll gener a l ly i ‘hex .uui Cqtiailuu i i ii t lie I ‘ r u t  
21 )

2 2 — ~~ y i 1,, I I it.’’ = 
~~~ 

L (7 .24)
v’~ mere ‘ir ’ is t he e ICc iv c i i m . i ~ s . oi ” the el lcL l i ve  1.inauiar ) I requency . y u ( o  ) t I m e eih~ct ive fre—
qu c nc~ depende nt d.iinpiitg ca nst ,un! .uui d (/~‘ iS I lie i co inpot ieot  of’ the efl’eciive charge. The
res ponse of ii ’ to a Um l i l  .ii’p ied lu rcc , a’~d:,i in I 

~ 
( 7 .22 i  is given by

H” ( = 
~

ui I (~ ,,l’ ( ( ~~ 
I’ 

~~ } (7.25)

Iil.i\ vo im i h u ,me  Eqs (
~~2 ( ’ ’  — t ’~’ ‘ “i  to c’ht~u iui /1w • w ’ ) . 1l J ( w  + ~~ ) us inserted

an p lace it .1 in I’.~ ~ ~ ( , li e u csuli . iii a’ .~ il I q (7 ‘ , is t i m e r a t io  of he Raman scattered
pi~~cr per unit I requc  IlL i r i ’ e r v  ii to lie uncid ent power , bot h computed outside the crystal.
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FI GURE CAI ’TIONS
FIG. I. A ty pica l e\pef l f l men l .u (  set up for .t Ra m ima m i sc ul lerm ng experiment which displa ys the

expa m ix t im n tu f the solid ang le on emerging [toni mite L r\ si il Far a narrow laser
beam , the source volume l ’~ I I ’, t rain wh ich scattered light us accepted is lim uted
hr the in put heani o em ‘1 and .u lcn gm ii I’, dcter mt ned h~’ the field stop.

FIG. 2. The solid amig le ill 1 associated wi th  a patch (if urea ill A = dat/ u on the serface
w (k I =w at t r cc - vs , uvt ’ k vectors mx given hr ,/uI ~,1 .f cash/A 2 where d.4 A Cu’sh is
the comp onent of ti m e area d l  iuirmn ~u l to k. xu m ic e d1 1’ s tiarmal to t or Vu 1k 1 .

FIG. 3. Gauss’s hump theorem relates the it ea if = diidr of in element id surface to the
area df ~ 

‘ on the suriace of a un it splic re subtended by t he unit normals to dudu’
th at have been shifted mm a par allel milam ine r ut itil the ir ori gin s coincide at 0. the
sphere center. The solid am ig le d f~ = a~

( dtl~ w here (it) = (lU/Pu, is the ang le AUD
and dh = i/c l j u us tim e .inglc .\V13 w here p.1 and p umre the princip al radii of curva-
ture. Thu s if? = A’ ~~~ 

A 
~ here A’ = (p 1, p , ) us the (iaussI, un curvature and

d.4 = i/ut/u’ IS the ur ea of ’ t ime palL I i  nim the w 1k I surface.
FIG. 4. Thu patch j ,~ 

A = diok on the surf ace i’u I k ) == w of Fi g. 3 is plotted in a k 1 ./12 
~~

coordinate s~ stein in vs ( l i e  I i  mime t im ree -dircet ion is along t lie direction n of a unit
normal to time xii ri ’~ucc of the c rvsI il The project ton of i/f on to t he 1—2 plane
y ields dA 1 dA 2 ui . i ~ cmis/1 because /3 is the angle between time normal t to ‘he
patch I time ray direct ion ) and the mi ort niml n to t lie surface.

FIG. 5. Demagnificat~an correctii,ns when the arrival ray , departure ray . aml (l surface normal
are all in (moe plane. ‘Fl ue detect or held st u ip (see Fig. I) us represented in image
spiic C by lime kt iile ~‘cl gcs , vs it ich ,uccc t um a dimeuision I~ pempendicu l ar to the beam.
Time portion I’, u m (  tI m e laser he,inm accepted us determine d by ti m e geometrical condi-
I iOnS S i i f )W Tl . i ide Pc 0(1cm) I at I lie uric 1 tat oil of time virtual image

= //i o~/3 = Iju /c

l’li is ma amuse ri p1 55 iv iii if iic c c l  on a canipu icr driven pimoi nt vpeset ter using ill
UNIX operating s ys meim i v l c v c l ’ i t ’ s ’cl at ik i l I . cuho t a tuum cx



M. Lax

MH_
~~~~

_
~~N

_ce D. F. Nelson

Att .
FIgures 1-5

t

k

- __________



r

SCATTERING GEOME T RY

— 

-

~~~
--

~~~~~~~ --
-- AN ISOTROPIC

SCATT ERING
MEDIUM

IV s
INCIDENT 

—~~~~~~~ _ _ _ _ _ _ _ _ _ _ _

-
~~~~~~

LASER BEAM ‘

7.~~ %
\

I
POINTING VECTOR
AND WAV E VECTOR
NONCOLLINEAR INSIDE

SPECTROMETER
(DETERMINES FIELD
AND APERTURE STOPS)

DETECTOR

FIG. 1



s~

8 ~~~~0~~~~~~~

’

7/ \ \ /
/ 1

I I / f Y~I¶

—
p 

_ ~~L

I I I
1 /

\ \  / 1
\ \  / 1\~~~~/

FIG. 2



GAUSS ’ BUMP THEOREM

C
B

D

dv 

/

\~ I /v V j  d~lr~ 
— - — : K d A

FIG. 3



t 4 )

f l\~~~~~

k 3 >~V
/ 

— 

~~k2

dk 2k 1

F!( . 4

‘I



// $ ~


